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Abstract—We propose a heterogeneous system of Deep Mixture
of Experts (DMoEs) models using different Convolutional Neural
Networks (CNNs) for acoustic scene classification (ASC). Each
DMoEs module is a mixture of different parallel CNN structures
weighted by a gating network. All CNNs use the same input
data. The CNN architectures play the role of experts extracting
a variety of features. The experts are pre-trained, and kept
fixed (frozen) for the DMoEs model. The DMoEs is post-trained
by optimizing weights of the gating network, which estimates
the contribution of the experts in the mixture. In order to
enhance the performance, we use an ensemble of three DMoEs
modules each with different pairs of inputs and individual
CNN models. The input pairs are spectrogram combinations of
binaural audio and mono audio as well as their pre-processed
variations using harmonic-percussive source separation (HPSS)
and nearest neighbor filters (NNFs). The classification result
of the proposed system is 72.1% improving the baseline by
around 12% (absolute) on the development data of DCASE 2018
challenge task 1A.

Index Terms—Acoustic scene classification, convolutional neu-
ral network, mixture of experts, nearest neighbor filters.

I. INTRODUCTION

Acoustic scene classification (ASC) is a recognition task for

sounds of environments called acoustic scenes. These scenes

are assumed to be distinguishable from other scenes based on

its acoustic properties. They are a characterization of a location

or situation. An acoustic scene is composed of sound events

which are considered as important descriptors. However, in

real environments, these sound events are varying and can have

different degrees of overlap. Therefore the acoustic scenes are

unstructured and often unpredictable in its occurrence causing

more challenges for ASC compared to speech and music signal

processing.

ASC includes two stages contributing to its effectiveness;

namely are feature extraction and classification. Mel-frequency

scales such as mel-frequency cepstral coefficients (MFCCs)

and log-mel energies have been the most popular features

applied in ASC. Furthermore, gamma-tone filter spectrogram,

constant-Q transform spectrogram, waveform and scalogram

features have been used [1], [2], [3], [4], [5]. In addition, the

features can be used as basis for higher level features i.e., i-

vectors [6], typical features of image processing i.e. histogram

of gradients (HOGs) [7], local binary pattern (LBP) [8] and

learned features, [9], [10], [11], [12], [13], [14].

In the recent ASC, deep learning is the method of choice for

classification. For example, a variety of model structures have

been applied such as parallel CNNs of VGGNets [9], Xception

networks [15], DenseNets [16], or CliqueNets [17]. Further-

more, ensemble methods have been a key factor contributing to

successfully proposed ASC systems. Popular ensemble meth-

ods such as averaging, weight averaging ensemble [11], [18],

ensemble selection [9], [12], or random forests [10] have been

used for different models. Recently, snapshot averaging hase

been proposed. It is an ensemble method which allows to

provide many different models with only one training run

using cyclical cosine learning rate schedule [13]. Moreover,

popular data augmentation techniques i.e., Generative Ad-

versarial Networks (GANs) [4], [19], data mixup [9], [17],

SpecAugment [18] and transfer learning [1], [3] are used to

improve performance.

In this paper, we use a mixture of experts. The experts use

pre-trained CNN models and embed them into the DMoEs

model. The expert outputs are combined using corresponding

weights of the gating network. The gating network, which is

similar to an attention mechanism, is a deep neural network

located inside of the DMoEs model. It benefits from using

the same input information as the pre-trained experts. Further-

more, we use different features for DMoEs, i.e. either using

log-mel spectrogram of both channels and their pre-processed

variations such as harmonic-percussive source separation and

nearest neighbor filters (NNFs). These features have been also

used in the best sytems of DCASE 2017 and DCASE 2018

challenges [9], [10], [12]. In addition, mixup data augmenta-

tion and ensemble techniques are used to enhance the model

performance.

The rest of the paper is organized as follows. Section 2

presents the proposed ASC system, including audio process-

ing, NNF features, mixup data augmentation, parallel CNNs,

deep mixture of experts and ensemble methods. In Section 3,

we provide experiments and evaluate the performance of the

proposed approach. Section 4 concludes the paper.

II. PROPOSED SYSTEM

The proposed system is illustrated in Fig.1. The system

consists of three stages. First, the binaural and mono audio

signals are converted to various time-frequency representations
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Fig. 1. Proposed System.

chunked into 2s segments. These features are used for training

the CNN models and DMoEs. Finally, the probability outputs

of these DMoEs models are fed to another ensemble method

before making the final label predictions.

A. Audio Pre-processing

We use the DCASE 2018 data set which is recorded by

binaural microphones at sampling rate of 48kHz. We keep

the sampling rate and use both the left and right channels of

the audio to exploit its richer spatial information. We extract

128 bin mel-energies of the binaural and mono (i.e. mean of

binaural channels) channels. This is an appropriate number of

bins compared to 40, 64 or 256 bins in [20], [21], [18] for

representing the spectral characteristics. The window function

of the short-time Fourier transform (STFT) is a Hann window

and the window size is selected as 40ms with 20ms hop size.

The size of each 2s segment is 128 bins x 100 frames.

We use left- and right- channel mel-spectrograms (LR),

harmonic and percussive spectrograms (HP), and mono-mel

spectrogram and its nearest neighbor filtered version (MN)1.

Although in the best systems spectrogram splitting of 1s

without overlap is used, splitting to 2s segments leads to a

better performance in our case. All features are converted

into logarithmic scale and normalized to zero mean and unit

variance.

B. Nearest Neighbor Filter

Environmental sounds are often unstructured, neither pre-

dictable repetitions nor harmonic sounds that are composed

by potentially overlapping sound events. These sound events

could be periodic or randomly repeating sounds such as sounds

of a siren, horn of vehicles, sounds of opening and closing

metro doors at metro stations etc. Therefore, it is useful for

an ASC system to generate features which emphasize the

appearance of similar patterns of a sound event in an acoustic

scene [12].

1The processing is done by using Librosa toolbox
https://librosa.github.io/librosa/
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Fig. 2. Parallel CNNs with single and double convolutional blocks.

Nearest neighbor filters are based on Repeating Pattern

Extraction Technique (REPET) [22] for cases where repeti-

tions happen intermittently or without a fixed period. The

algorithm determines first the five most similar spectrogram

frames as nearest neighbors by using a similarity matrix. Then

the median of the nearest neighbors is used to create a new

spectrogram representation.

C. Mixup Data Augmentation

Mixup data augmentation [23] constructs virtual training

examples (x̃, ỹ) by a convex combination of two randomly

selected training data samples (xi, yi) and (xj , yj), i.e.

x̃ = λxi + (1− λ)xj ,

ỹ = λyi + (1− λ)yj ,
(1)

where xi and xj are the features of the 2s segments and yi and

yj are the one-hot encoded class labels. λ ∈ [0, 1] is acquired

by sampling from a beta distribution Beta(α, α) with α being

a hyper-parameter. We use α of 0.2 for our system.

D. Parallel Convolutional Neural Networks

Recently, CNNs have been considered as an extractor of

high-level features. In this paper, we generate six CNN struc-

tures for each DMoEs model. By adjusting the depth of the

CNNs and the structure of the convolutional blocks using a

different number of single convolutional blocks and double

convolutional blocks. It means that each CNN structure is

considered as an expert and it can focus on certain parts of

the acoustic scene.

Parallel CNNs (also called multi-input CNNs) have been

used with different input features or structures for each

branch of the CNN architecture. We feed different feature

representations (LR, HP, MN) to parallel branches of CNNs.

Subsequently, both branches are concatenated before the fully-

connected layer. A convolutional block consists of zero-

padding, batch normalization (BN), convolution layers (Conv)

and followed by Rectifier Linear Units (ReLUs) activation

function. Fig. 2 shows the structure of parallel CNNs using

single and double convolutional blocks.
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Based on empirical results, we select the number of filters

for the convolutional layers of the CNNs including 2, 3 and 4

single or double convolutional blocks as 32 - 256, 32 - 128 -

256 and 32 - 64 - 128 - 256, respectively. Both convolutional

layers of each double convolutional block have the same size

of 3x3 filters.

E. Deep Mixture of Pre-trained Experts

Mixture of experts architecture (MoEs) consists of a set of

modules referred to as expert networks which are appropriate

for different regions of the input space. A gating network

identifies the suitable expert for each regions [24]. When

experts and the gating network are implemented by DNNs,

it is called a Deep Mixture of Experts (DMoEs) [25], [26].

A DMoEs model needs a two-step training process, namely,

learning of parameters for the individual experts and learning

of the parameters for the gating network. Firstly, the experts

are pre-trained for modeling the outputs yi. These outputs

are then combined by a set of weights determined by the

gating network gi. The combination of the pre-trained experts

and their corresponding weights is the output of the DMoEs

model. By post-training, the weights of the gating network

are adjusted using the same input data as the experts. Fig.3(a)

shows the architecture of a DMoEs. The output layer provides:

p(y|x; θ) =
n∑

i=1

p(g = i|x; θg)p(y|g = i, x; θi) (2)

where θg are the parameters of the DNN gating network, θi
are the parameters of the i-th expert and n is the number of

experts.

In this work, each DMoEs model includes 6 different pre-

trained CNNs, a gating network and an output layer. The

gating network is implemented by either a parallel CNN or

multi-perceptron layer. Its outputs are concatenated and fed to

a softmax layer of M units, where M is equal to the product

of the number of classes and the number of experts.

We use the same training dataset of the DCASE develop-

ment set for both pre-training and post-training.

F. Ensemble Methods

We combine the DMoEs models using ensembling tech-

niques. In particular, we compare performance of three ensem-

ble methods named average ensemble (AE), weighted averag-

ing ensemble (WE) and ensemble selection with replacement

(ES) [27]. The weights of the average ensemble are equal for

each DMoEs model and sum to one. The weighted averaging

ensemble determines the optimal weights by minimization of

the cross-entropy loss using ground-truth labels and estimated

labels. Weights are also constrained to sum to one. Ensemble

selection with replacement [27] is an iterative method that

allows models to be added to an ensemble multiple times such

that the performance of the combination is maximized, so the

weights of this ensemble are equivalent to the number of times

the model has been selected divided by the total number of

models in the ensemble.

CNN1 CNN2 CNNn GateDNN

Input

y1 y2 yn

{g1, g2, ..., gn}y =
∑n

i=1 yi.gi

DMoEs Outputs

Fig. 3. Architecture of DMoEs.

We use the training data to determine the optimal weights

for WE and ES. Sequential Least Squares Programming

(SLSQP) is used to determine the weights of WE. For ES,

we start with the best model among all candidate models of

the ensemble before greedy model selection is performed for

200 iterations. The determined weights are used for evaluation

on the test set.

III. EXPERIMENTS

A. Data

We use the TUT Urban Acoustic Scene 2018 dataset

recorded in six European cities. A binaural microphone at sam-

pling rating 48kHz is used. The original recordings were split

into 10-second segments that are provided in the individual

files. The dataset includes 8640 segments with 6122 segments

for training and 2518 segments for testing. It contains 10

scenes.

B. Setup

The validation set accounts for approximately 30% of the

original training data and there are no segments from the same

location and city in both training and validation data sets.

Acoustic features are log mel-band energies of 128 frequency

bands and their variations with 40 ms frame size and 50%

hop size. The network training is carried out by optimizing the

categorical cross-entropy using the stochastic gradient decent

optimizer at a learning rate of 0.001. We use Glorot uniform

data to initialize the network weights. The number of epochs

and batch size was 500 and 128, respectively, and data is

shuffled between epochs. Model performance is evaluated on

the validation set after each epoch and the selected model is

the best performing one on the validation set.

C. Performance On The Test Set

Table 1 presents the accuracy of the best individual models.

The best CNN structures for each input combination are: LR

using 4 single CNN blocks (LR-4s-cnn), HP using 3 double
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TABLE I
ACCURACY OF THE PROPOSED MODELS AND OF THE ENSEMBLE

METHODS.

Algorithm Accuracy Algorithm Accuracy

Baseline [20] 59.7± 0.7 LR-4s-cnn(*) 67.6

- - HP-3db-cnn(*) 68.0

- - MN-2s-cnn(*) 67.5

LR-MoE dnn 67.1 MN-MoE cnn 67.4

HP-MoE dnn 67.6 LR-MoE cnn 67.5

MN-MoE dnn 67.4 HP-MoE cnn 66.6

AE(MoE dnn) 70.9 AE(MoE cnn) 70.2

WE(MoE dnn) 70.0 WE(MoE cnn) 70.2

ES(MoE dnn) 71.0 ES(MoE cnn) 70.5

AE-6(MoE dnn + 3(*)) 71.8 AE-21 72.1
WE-6(MoE dnn + 3(*)) 71.8 WE-21 71.3

ES-6(MoE dnn + 3(*)) 71.0 ES-21 71.2

CNN blocks (HP-3db-cnn) and MN using 2 single CNN

blocks (MN-2s-cnn). We can see that the best models reach

a comparable accuracy. Furthermore, MoE dnn and MoE cnn

are DMoEs of 6 experts using different CNN structures and

a gating network of either a multi-perceptron layer or con-

volutional layer, respectively. The performances of MoE dnn

and MoE cnn with different inputs (LR, HP, MN) are slightly

lower compared to the best corresponding models. The high

variance of the gating weights for the 10 classes and 6 experts

could partly cause the performance decrease.

In addition, Table 1 show performances of ensemble meth-

ods such as average ensemble (AE), weighted ensemble (WE)

and ensemble selection (ES). Most of the performances of

MoE dnn ensembles using MoE dnn models of 3 different

inputs (LR, HP, MN) (called 3 MoE dnn models) are higher

than that of MoE cnn ensembles. ES(MoE dnn) is the best

ensemble of 3 MoE dnn models with a performance of 71.0%.

The performance of the ensemble model can be improved

by increasing the number of component models. Moreover,

the ensemble performance of 6 individual component models

including the 3 MoE-dnn models and the 3 best individual

models (MoE dnn + 3(*)) are a bit lower than the ensemble

performance of 21 models which includes 6 different CNN

structures and the MoE dnn model for each of the 3 feature

inputs (LR, HP, MN). The average ensemble of 21 model (AE-

21) achieves the best performance of 72.1%.

Table 2 shows the class-wise accuracy of the baseline

system and the proposed system. This system is the average

ensemble of 21 models consisting of 18 individual models

of different inputs and 3 DMoEs of DNN (MoE dnn). The

public square and the street traffic are the hardest and easiest

scenes for both the proposed algorithm and baseline system,

respectively. The proposed algorithm for the hardest scene

significantly outperforms that of the baseline system by 14.2%.

IV. CONCLUSION

In this paper, we introduce a deep mixture of experts

model to exploit the diversity of high-level features from

TABLE II
CLASS-WISE ACCURACY OF THE PROPOSED SYSTEM ON THE TEST SET

COMPARED TO BASELINE SYSTEM.

Scene label Baseline [20] Propose

Airport 72.9 74.0
Bus 62.9 71.1
Metro 51.2 69.0
Metro station 55.4 83.4
Park 79.1 88.0
Public square 40.4 54.6
Shopping mall 49.6 54.8
Street pedestrian 50.0 58.3
Street traffic 80.5 92.7
Tram 55.1 74.7
Average 59.7± 0.7 72.1

pre-trained parallel CNNs. We combine these models using

weights of a gating network. In order to improve the prediction

performance, we propose an heterogeneous ensemble of 3

DMoEs models using a multi-layer perceptron in the gating

network and 18 individual models of 6 different CNNs and

3 different audio features. Mixup data augmentation is ad-

ditionally used to leverage the model accuracy. Our proposed

ensemble system significantly improves performance to 72.1%

and it outperforms the baseline system of the DCASE 2018

task 1A by 12% (absolute). However, it requires to train many

models with a large number of parameters.
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